Graal NPC Programming

� VERZEICHNIS \o "1-3" �1. Introduction	� GEHEZU _Toc468537006 � SEITENREF _Toc468537006 �4��

2. Starting	� GEHEZU _Toc468537007 � SEITENREF _Toc468537007 �4��

3. The Graal script system	� GEHEZU _Toc468537008 � SEITENREF _Toc468537008 �5��

4. Plain npc commands	� GEHEZU _Toc468537009 � SEITENREF _Toc468537009 �7��

4.1. message text;	� GEHEZU _Toc468537010 � SEITENREF _Toc468537010 �7��

4.2. say signindex;	� GEHEZU _Toc468537011 � SEITENREF _Toc468537011 �7��

4.3. lay itemname;	� GEHEZU _Toc468537012 � SEITENREF _Toc468537012 �7��

4.4. take itemname;	� GEHEZU _Toc468537013 � SEITENREF _Toc468537013 �8��

4.5. hide;	� GEHEZU _Toc468537014 � SEITENREF _Toc468537014 �8��

4.6. show;	� GEHEZU _Toc468537015 � SEITENREF _Toc468537015 �8��

4.7. setgif filename;	� GEHEZU _Toc468537016 � SEITENREF _Toc468537016 �8��

4.8. hurt halfhearts;	� GEHEZU _Toc468537017 � SEITENREF _Toc468537017 �8��

4.9. play filename;	� GEHEZU _Toc468537018 � SEITENREF _Toc468537018 �8��

4.10. stopmidi;	� GEHEZU _Toc468537019 � SEITENREF _Toc468537019 �8��

5. Variables , loops and animations	� GEHEZU _Toc468537020 � SEITENREF _Toc468537020 �9��

5.1 Working with variables	� GEHEZU _Toc468537021 � SEITENREF _Toc468537021 �9��

5.2. Special assignment symbols	� GEHEZU _Toc468537022 � SEITENREF _Toc468537022 �11��

5.3. Loops	� GEHEZU _Toc468537023 � SEITENREF _Toc468537023 �11��

5.4. timeouts/ sleep command	� GEHEZU _Toc468537024 � SEITENREF _Toc468537024 �12��

5.5. timeouts in online mode	� GEHEZU _Toc468537025 � SEITENREF _Toc468537025 �13��

5.6. 'this'-variables	� GEHEZU _Toc468537026 � SEITENREF _Toc468537026 �13��

6. More commands	� GEHEZU _Toc468537027 � SEITENREF _Toc468537027 �14��

6.1. Controling the program flow	� GEHEZU _Toc468537028 � SEITENREF _Toc468537028 �14��

6.1.1. else operation;	� GEHEZU _Toc468537029 � SEITENREF _Toc468537029 �14��

6.1.3. setarray var,size;	� GEHEZU _Toc468537030 � SEITENREF _Toc468537030 �14��

6.1.4. setstring varname,value;	� GEHEZU _Toc468537031 � SEITENREF _Toc468537031 �14��

6.2. Simple NPC manipulation	� GEHEZU _Toc468537032 � SEITENREF _Toc468537032 �15��

6.2.1. setgifpart filename,x,y,width,height;	� GEHEZU _Toc468537033 � SEITENREF _Toc468537033 �15��

6.2.2. dontblock;	� GEHEZU _Toc468537034 � SEITENREF _Toc468537034 �15��

6.2.3. drawoverplayer;	� GEHEZU _Toc468537035 � SEITENREF _Toc468537035 �15��

6.2.4. drawunderplayer;	� GEHEZU _Toc468537036 � SEITENREF _Toc468537036 �15��

6.2.5. blockagain;	� GEHEZU _Toc468537037 � SEITENREF _Toc468537037 �15��

6.2.6. canbecarried;	� GEHEZU _Toc468537038 � SEITENREF _Toc468537038 �16��

6.2.7. cannotbecarried;	� GEHEZU _Toc468537039 � SEITENREF _Toc468537039 �16��

6.2.8. canbepushed;	� GEHEZU _Toc468537040 � SEITENREF _Toc468537040 �16��

6.2.9. cannotbepushed;	� GEHEZU _Toc468537041 � SEITENREF _Toc468537041 �16��

6.2.10. canbepulled;	� GEHEZU _Toc468537042 � SEITENREF _Toc468537042 �16��

6.2.11. cannotbepulled;	� GEHEZU _Toc468537043 � SEITENREF _Toc468537043 �16��

6.3. Complex NPC operations	� GEHEZU _Toc468537044 � SEITENREF _Toc468537044 �16��

6.3.1. timershow;	� GEHEZU _Toc468537045 � SEITENREF _Toc468537045 �16��

6.3.2. showcharacter;	� GEHEZU _Toc468537046 � SEITENREF _Toc468537046 �16��

6.3.3. setcharprop messagecode,string;	� GEHEZU _Toc468537047 � SEITENREF _Toc468537047 �16��

6.3.4. putnpc gifname,scriptname,x,y;	� GEHEZU _Toc468537048 � SEITENREF _Toc468537048 �17��

6.3.5. destroy;	� GEHEZU _Toc468537049 � SEITENREF _Toc468537049 �17��

6.3.6. followplayer;	� GEHEZU _Toc468537050 � SEITENREF _Toc468537050 �17��

6.3.7. toinventory flag;	� GEHEZU _Toc468537051 � SEITENREF _Toc468537051 �17��

6.3.8. toweapons weaponname;	� GEHEZU _Toc468537052 � SEITENREF _Toc468537052 �17��

6.3.9. showimg index,gifname,x,y;	� GEHEZU _Toc468537053 � SEITENREF _Toc468537053 �17��

6.3.10. hideimg index;	� GEHEZU _Toc468537054 � SEITENREF _Toc468537054 �18��

6.3.11. shootarrow direction;	� GEHEZU _Toc468537055 � SEITENREF _Toc468537055 �18��

6.3.12. shootfireball direction;	� GEHEZU _Toc468537056 � SEITENREF _Toc468537056 �18��

6.3.13. shootfireblast direction;	� GEHEZU _Toc468537057 � SEITENREF _Toc468537057 �18��

6.3.14. shootnuke direction;	� GEHEZU _Toc468537058 � SEITENREF _Toc468537058 �18��

6.3.15. shootball;	� GEHEZU _Toc468537059 � SEITENREF _Toc468537059 �18��

6.3.16. hitplayer index,halfhearts,fromx,fromy;	� GEHEZU _Toc468537060 � SEITENREF _Toc468537060 �18��

6.4. Player manipulation	� GEHEZU _Toc468537061 � SEITENREF _Toc468537061 �19��

6.4.1. setlevel filename;	� GEHEZU _Toc468537062 � SEITENREF _Toc468537062 �19��

6.4.2. seturllevel URL;	� GEHEZU _Toc468537063 � SEITENREF _Toc468537063 �19��

6.4.3. sethead gifname;	� GEHEZU _Toc468537064 � SEITENREF _Toc468537064 �19��

6.4.4. setsword gifname,power;	� GEHEZU _Toc468537065 � SEITENREF _Toc468537065 �19��

6.4.5. setshield gifname,power;	� GEHEZU _Toc468537066 � SEITENREF _Toc468537066 �19��

6.4.6. setbow gifname;	� GEHEZU _Toc468537067 � SEITENREF _Toc468537067 �19��

6.4.7. setplayerdir direction;	� GEHEZU _Toc468537068 � SEITENREF _Toc468537068 �20��

6.4.8. setskincolor colorname;	� GEHEZU _Toc468537069 � SEITENREF _Toc468537069 �20��

6.4.9. setcoatcolor colorname;	� GEHEZU _Toc468537070 � SEITENREF _Toc468537070 �20��

6.4.10. setsleevecolor colorname;	� GEHEZU _Toc468537071 � SEITENREF _Toc468537071 �20��

6.4.11. setshoecolor colorname;	� GEHEZU _Toc468537072 � SEITENREF _Toc468537072 �20��

6.4.12. setbeltcolor colorname;	� GEHEZU _Toc468537073 � SEITENREF _Toc468537073 �20��

6.4.13. setplayerprop messagecode,string;	� GEHEZU _Toc468537074 � SEITENREF _Toc468537074 �21��

6.4.14. takeplayercarry;	� GEHEZU _Toc468537075 � SEITENREF _Toc468537075 �21��

6.4.15. disableweapons;	� GEHEZU _Toc468537076 � SEITENREF _Toc468537076 �21��

6.4.16. enableweapons;	� GEHEZU _Toc468537077 � SEITENREF _Toc468537077 �21��

6.4.17. freezeplayer seconds;	� GEHEZU _Toc468537078 � SEITENREF _Toc468537078 �21��

6.4.18. hideplayer seconds;	� GEHEZU _Toc468537079 � SEITENREF _Toc468537079 �21��

6.4.19. hidesword seconds;	� GEHEZU _Toc468537080 � SEITENREF _Toc468537080 �21��

6.5. Level/Game manipulation	� GEHEZU _Toc468537081 � SEITENREF _Toc468537081 �21��

6.5.1. updateboard x,y,width,height;	� GEHEZU _Toc468537082 � SEITENREF _Toc468537082 �21��

6.5.2. putobject objectname,x,y;	� GEHEZU _Toc468537083 � SEITENREF _Toc468537083 �22��

6.5.3. putbomb power,x,y;	� GEHEZU _Toc468537084 � SEITENREF _Toc468537084 �22��

6.5.4. putexplosion radius,x,y;	� GEHEZU _Toc468537085 � SEITENREF _Toc468537085 �22��

6.5.5. putleaps leaptype,x,y;	� GEHEZU _Toc468537086 � SEITENREF _Toc468537086 �22��

6.5.6. puthorse gifname,x,y;	� GEHEZU _Toc468537087 � SEITENREF _Toc468537087 �22��

6.5.7. setbackpal filename;	� GEHEZU _Toc468537088 � SEITENREF _Toc468537088 �22��

6.5.8. setletters filename;	� GEHEZU _Toc468537089 � SEITENREF _Toc468537089 �23��

6.5.9. setmap gifname,levelnamesfile,x,y;	� GEHEZU _Toc468537090 � SEITENREF _Toc468537090 �23��

6.5.10. setminimap gifname,levelnamesfile,x,y;	� GEHEZU _Toc468537091 � SEITENREF _Toc468537091 �23��

6.5.11. noplayerkilling;	� GEHEZU _Toc468537092 � SEITENREF _Toc468537092 �23��

6.6. Baddy manipulation	� GEHEZU _Toc468537093 � SEITENREF _Toc468537093 �23��

6.6.1. putcomp baddyname,x,y;	� GEHEZU _Toc468537094 � SEITENREF _Toc468537094 �23��

6.6.2. putnewcomp baddyname,x,y,gifname,power;	� GEHEZU _Toc468537095 � SEITENREF _Toc468537095 �24��

6.6.3. hitcompu index,decrpower,fromx,fromy;	� GEHEZU _Toc468537096 � SEITENREF _Toc468537096 �24��

6.6.4. removecompus;	� GEHEZU _Toc468537097 � SEITENREF _Toc468537097 �24��

6.7. File operations	� GEHEZU _Toc468537098 � SEITENREF _Toc468537098 �24��

6.7.1. openurl URL;	� GEHEZU _Toc468537099 � SEITENREF _Toc468537099 �24��

6.7.2. showfile filename;	� GEHEZU _Toc468537100 � SEITENREF _Toc468537100 �24��

7. Events	� GEHEZU _Toc468537101 � SEITENREF _Toc468537101 �25��

8. Addtional flags	� GEHEZU _Toc468537102 � SEITENREF _Toc468537102 �25��

9. Message codes	� GEHEZU _Toc468537103 � SEITENREF _Toc468537103 �26��

�
�1. Introduction

� EINBETTEN Word.Picture.6 ���

With npcs you can add more interactivity and fun to your Graal levels. Painting a gif image to define the look and coding a script to specify the behaviour, that's all for giving your levels an unique touch.

2. Starting

�

There are two ways if creating npcs. In the editor, click on 'Baddies,Npcs,Chests'. At the left lower corner you see a figure outline and a figure looking like a player wearing the ‘Fing Si Yun’ head.

When selecting the figure outline and moving it on the board, you will create an npc with an empty script. Then you will see a window where you can edit the npc (filename and script). If you close the window and want to reopen it, then double-click on the npc.

To create an npc with a pre-generated script, select the player figure and place it on the level board. A window will pop up where you can change the attributes of the npc. Depending on what chooses you make and what values you type in, the game will create a new npc with a huge script. You don’t need to change the script, it will do everything what you wanted to have. If you still want to change it, double-click on the npc to open the normal npc editor window.

In the npc editor window you see a field for the filename and an action button. Specify a gif file that defines the look of the npc. You can do that directly by typing in the name in the edit field or by using the Windows folder view that will be opened when you click on the 'Browse' button. Some npcs doesn’t have a gif file, especially when the npc uses the ‘showcharacter’ command to look like a player.

The npc's behaviour can be changed by modifying the action script. To do that, press the 'Action' button. A new window will be opened. On the left side you see the text area where you can type in the script. On the right side you see the commands list (scroll right/down to see all). Press the 'Signs' button to open the signs list for the current level (that will be important for the 'say' command) or press the 'Test' button to check the script for syntax errors. The error will be

displayed in the yellow line and will contain important informations about how to solve the

problem (the command that caused the error will be highlighted). Only the first error found will be displayed.

�
3. The Graal script system

Each npc has its own script. The game loads the scripts when you enter a level that contains npcs. The scripts (lists of commands) will be translated into an internal format. Each time an event occurs (the player enters the level, the player touchs the npc, the player lays an item, etc.) the whole command list will be executed. For each event type there is a special flag that will be set when this type of event occurs. In dependence of that flags you can decide what to do (we will talk later about what 'flags' in the Graal script language mean). A simple example for an npc script:

�

	if (playertouchsme) {

	 lay greenrupee;

	 hide;

	}

The most important command is 'if'. With this command you can check if a flag is set. The flag must be put into round brackets. If it's set, then the following command or the commands set in brackets will be executed, otherwise the command following the closing bracket will be executed next (in this case the script execution will be finished if the flag is not set).

The 'playertouchsme' flag is set if you touch the npc right in this moment. Here are some other important flags:

 - playerenters	set when the player currently enters the level

 - playertouchsother	set when another npc is touched by the player

 - playerlaysitem 	set when an item is layed by the player or another npc

 - compusdied	set when the last baddy has died

 - playerendsreading	set when the player ends reading a sign

 - timeout 	set when the npc's timeout runs out

Of course you can set your own flags too:

set myflag;

unset myflag;

�

These commands set/unset flags. As flag you can use any character string, only that characters that control the command flow should not be used inside the string (spaces, '{', '}', etc.) The flag will be stay set in the whole game, until you do the 'unset' command. The flags will be saved in savegames too. But to make it easier to test your scripts there is the flag icon in the editor, press that icon to edit the list of the currently set flags.

Flags can be combined to boolean operations:

!	means not

&&	means and

||	means or

So you can use combinations like 'playertouchsme && !myflag'.

In the script described above there are only two commands that will be executed if the flag 'playertouchsme' is set. 'lay greenrupee' lays a green ruppee next to the npc, 'hide' will hide the npc. See the following chapters for these and more commands.

�
4. Plain npc commands

�

4.1. message text;

Displays a message above the npc. It looks like the chat text from regular players. To remove the message, just do the command 'message;' (a text with the length 0). Read chapter 8 for more informations about the message command.

4.2. say signindex;

Displays the sign with the specified index. To use this command, press the 'Signs' button and add a sign. Type in a text and set the x/y coordinates to 0. In the signs list you see the index of the added sign. Close the window and return to the action script. There type in the sign index. You can display existing signs too, just go to the sign list and look for the index of the sign you want to display.

If you make npcs that can be carried to other levels, then you should not use this command because in the other levels there are different sign lists.

4.3. lay itemname;

Lays an item. The item will be layed to the right or to the bottom, it depends on where the player stands. These are the available items:

�

�

�

�

����

�

�

�

�

����

�

�

�

�

����

�

�

�

�

����

�

�

�

�

����

�

�

�

���

The 'lay' command doesn't change the properties of the npc, so when you lay down a rupee the rupee count of the npc will not be changed. The npc can lay down as many items as wished, but that shouldn't be abused.

4.4. take itemname;

Takes the with 'itemname' described item, when there is currently one laying around. This changes the properties of the npc, so you can check if the npc got an item by testing the properties (how this works will be described later in this document).

4.5. hide;

Hides the npc. If this is done, you cannot see the npc anymore. But the npc can still do actions. If you reenter the level, the npc will be showed again (except in the online mode).

4.6. show;

Makes the npc visible. This only works, when the gif file specified for this npc really exists.

4.7. setgif filename;

Changes the gif file assigned to this npc. You can take every gif, even animated gifs will be accepted. When you use this command, the npc will be automatically displayed.

�

4.8. hurt halfhearts;

Hurts the player. The player looses the power that is defined with 'halfhearts' (2 halfhearts are one fullheart/one shaolin symbol). Additionally the player will be thrown away from the npc. You can also use a 0 or negative amounts of halfhearts, in this case the player doesn't loose power or will even get healed.

4.9. play filename;

Plays a wav file through the DirectSound engine. You can also use this command to play midis or other file types that are supported by the installed Windows media player.

4.10. stopmidi;

Stops playing the currently running midi file.

�
5. Variables , loops and animations

5.1 Working with variables

With the commands described in the previous chapter you can do some simple actions like laying an item when the player touchs the npc. You can change the look of the npc too. But when you are playing with these commands a little bit, then soon you will see that it would be good if you could even check the player properties or change the npc position. That can be done using variables.

myvar = 1;

if (myvar==1) { ... }

In the first line of the example you see an assignment. If you assign a value to a variable name, then the game automatically creates a variable and assigns the value to that variable. All variables have floating point values and can be accessed by every npc in the same level (except 'this.'-variables, they will be described later). The variables will be removed when you leave a level.

In the second line there is again an 'if'-command, but this time there is no flag inside the brackets. Instead of that you see a comparison operation. You can do comparison operations with two variables, combined through a boolean operation symbol (>,<,>=,<=,==,!=). The double-'=' means equality. So 'myvar==1' is true when myvar is equal to 1.

There are some predefined variables. You can check that variables to get the current position or the current rupee count, but you can also assign values to them to change them:

x	the npc’s horizontal position

y	the npc’s vertical position (top=0)

timeout	the npc’s timeout counter (seconds)

rupees	the npc’s rupees count

bombs	the npc’s bombs count

darts	the npc’s darts count

hearts	the npc’s hearts count

glovepower	the npc’s gloves (1-glove1,2-glove2)

swordpower	the npc’s sword power (1-normal sword,2-axe,3-lizardsword,

	4-golden sword)

shieldpower 	the npc’s shield power (1-normal sword,2-mirror shield,

	3-lizard shield)

dir	the direction of the character

sprite	the sprite of the character

ap	the alignment points of the character(0..100)

hurtdx	will be set when the player uses the sword/npc weapon on the npc

hurtdy	 (x/y difference, >=-1, <=1)

save[0],..,save[9]	build-in variables that work in online mode (integer values >=0, <=220)

playerscount	the player count

players[index].x	a player’s horizontal position

players[index].y	a player’s vertical position

players[index].mp	a player’s magic points

players[index].mp	a player’s alignment points

players[index].hearts	a player’s hearts count

players[index].dir	a player’s direction (0-up,1-left,2-down,3-right)

players[index].headset	a player’s head sprites set (“head“+playerheadset+“.gif“)

players[index].rupees	a player’s rupees count

players[index].bombs	a player’s bombs count

players[index].darts	a player’s arrows count

players[index].fullhearts	a player’s max hearts count

players[index].glovepower	a player’s glove power (2-glove1,3-glove2)

	3-joltbomb)

players[index].swordpower	a player’s sword power (1-normal sword,2-axe,3-lizardsword,

	4-golden sword)

players[index].shieldpower	a player’s shield power (1-normal sword,2-mirror shield,

	3-lizard shield)

players[index].sprite	a player’s sprites set (0..38)

players[index].id	a player’s id

players[index].saysnumber	the (index+1)th player says that number

 (playerx,playery,... = players[0].x,players[0].y,... = current players properties)

compuscount	the baddy count

compus[index].x	a baddy’s horizontal position

compus[index].y	a baddy’s vertical position

compus[index].type	a baddy’s type (0..9)

compus[index].dir	a baddy’s body direction (0..3)

compus[index].headdir	a baddy’s head direction (0..3)

compus[index].power	a baddy’s power

compus[index].mode	a baddy’s mode

board[index]	the level board (index = 0..64*64-1)

random(a, b)	a random floating point value, a<= value < b

sin(a)	the sinus of a; a is an angle in the radiant system (0...3.14)

cos(a)	the cosinus of a; a is an angle in the radiant system (0...3.14)

arctan(a)	the arcus tangens of a; a is an angle in the radiant system (0...3.14)

int(a)	the integer value of a variable (truncates the floating point part)

abs(a)	the absolute value

arraylen(a)	the size of an array

strtofloat(str)	the value of ‘str’ as number

You can read all that variables, but only change some of them: x, y,...,save[9], playerx, playery, ..., playerdarts, playerglovepower, playersprite.

To change ‘playerfullhearts’, ’playershieldpower’ and ‘playerswordpower’ you can use the commands ‘lay fullheart’, ’setshield’, and ‘setsword’.

For assignments you can you use brackets and some arithmetical operations (+,-,*,/,%,^).

Hint 1: You can also use some other symbols like ':=' for assignment and a single '=' for checking equality, but it's not recommended (to keep compability to the Java/C++ syntax).

Hint 2: There are also array variables. Use the command ‘setarray’ to initialize an array.

Hint 3: ‘playersaysnumber’ only parses the beginning of the player’s chat text. So you can combine it with ‘strcontains’ like

if (strcontains(#c,arrows)) playerdarts+=playersaysnumber;

When the player says ‘2 arrows’ he will get 2 arrows with this script.

‘playersaysnumber’ also accepts complex mathematical constructs and even variable names. If you do a money bank with

if (playertouchsme) if (playersaysnumber<=playerrupees)

 rupees+=playersaysnumber;

then the player can bank all his money just by saying ‘playerrupees’ and touching the npc.

5.2. Special assignment symbols

For some special assignments there are symbols that make the life a little bit easier:

a += b			means a = a+b

a -= b			means a = a-b

a *= b			means a = a*b

a ++			means a = a+1

a --			means a = a-1

With these kinds of assignment you can save time for typing, it doesn't make the operation faster. Don't use these assignments inside other commands like 'if (x++>5)'. That's possible in Java/C++, but not in the Graal script.

5.3. Loops

This chapther only describes loops. If you want to make animations, then read chapter 4.3.

There is the command ‘for’ for doing a simple loop. Here is the definition and a simple example of how to use it:

for (init-op; flag; incr-op) operation;

for (i=0; i<compuscount; i++) hitcompu i,x,y,1;

This example code pushes all baddies away from the npc.

The first part of the ‘for’ command is ‘init-op’. That is an command that will be executed before the loop starts. So you can do initializations there. You can only put one command there.

The next part is the checking of if ‘flag’ is true. If yes, then ‘operation’ will be executed.

If that is done, the command ‘incr-op’ will be executed.

That was one step. Now we check ‘flag’ again. If it’s still true, then ‘operation’ and ‘incr-op’ will again be executed. The loop will be continued until ‘flag’ is false. So you should do something in ‘incr-op’, e.g. increasing a variable, and checking with ‘flag’ if this variable exceeded a limit.

In the example the variable ‘i’ will be initalized to 0 (i=0), increased by 1 (i++), until it’s equal or greater ‘compuscount’. That way you hurt all baddies with ‘hitcompu’ because ‘i’ takes all values between 0 and compuscount-1.

Another kind of loop are ‘while’ loops:

while (flag) operation;

It works like ‘for (;flag;) operation’, so there is no initialization or incrementing. ‘operation’ will be executed while ‘flag’ is true.

To avoid endless loops the loop count is limited to 10000. This limit can only be exceeded when you do the ‘sleep’ command inside the loop scope.

5.4. timeouts/ sleep command

To do animations or movements, you can use the 'timeout' variable.

If you set the timeout to 1sec, then after one second a 'timeout' event occurs and the npcs action script will be called with the flag 'timout' set. To show how it works, here a little example:

if (playerenters) timeout = 1;

if (timeout) {

 x += 0.5;

 timeout = 1;

}

If an npc has that script, then every second it moves 0.5 fields to the right:

1. When the player enters the level, the script will be called with the 'playerenters' flag set

2. So the timeout will be set to 1 (second)

3. The game counts the timeout down to 0

4. After 1 second the script will be called again, this time with the 'timeout' flag set

5. So the x variable will be increased and the timeout will be set again to 1

6. continue with step 3.

If you don't set the timeout again, then the timeout event will not occur again.

You can do the same stuff with the ‘sleep’ command:

if (playerenters) {

 while (1==1) {

 sleep 1;

 x += 0.5;

 }

}

When doing ‘sleep’, then the script execution will be paused for 1 second. So in this example the npc will forever do a while loop, in this loop the npc ‘sleeps’ 1 second, then moves to the right, then sleeps 1 second, then moves to the right and so on. Internernally the ‘sleep’ command only uses the ‘timeout’ variable: it sets the timeout var, then when the ‘timeout’ event occurs the script execution will be started one line behind the ‘sleep’ command. If you change the timeout variable while doing ‘sleep’ (e.g. when another event occurs), then the next timeout event will start with the first script line, so be patient with changing ‘timeout’ while another animation loop may be running.

5.5. timeouts in online mode

In the online mode normally only the player who entered the level first (of all players in the current room) is getting timeout events. With ‘timereverywhere’ you can enable timeout events for all players: it enables the current player to get timeout events, so you should do it while processing the ‘playerenters’ event.

But if you want to do animations or movements you should only change the npc properties on one machine, otherwise you produce too much network traffic and strange npc movements. So check if ‘isleader’ is true. That flag is only true when the player is the one who entered the level first and would always get timeout events.

5.6. 'this'-variables

If you want to add several npcs into the same level, then it's hard to code the movement using normal variables because you need special scripts for each npc. To prevent that you can use 'this'-variables. They are only available for the current npc, but so different npcs can use the same variable names without influencing the movement of the other npcs.

Such local variables only start with a 'this.' , that's all. Here an example:

if (playertouchsme) {

 this.movex = 5;

 timeout = 1;

}

if (timeout) {

 this.movex ++;

 x = this.movex;

 timeout = 1;

}

In this example the 'this.movex' will be set to 5 when the player touchs the npc. Every second that variable will be increased and assigned to the x position. That way the npc moves to the right.

You can add several npcs with that script to the same level. Every time you touch an npc it will move to the right, starting at position 5. If you would use a variable named 'movex' instead of 'this.movex' then all npcs would be on the same x-position and jump back to position 5 every time you touch another npc.

�
6. More commands

6.1. Controling the program flow

6.1.1. else operation;

'else' must follow to an 'if' command. If the flag checked with the 'if' command was false, then the command (or command list put in {}) that follows the else command will be executed. Examples:

if (rupees>10) x = 30; else x = 40;

if (rupees>10) {

 x = 30;

 y = 30;

} else x = 40;

if (rupees>10) x = 30;

else {

 x = 40;

 y = 40;

}

6.1.3. setarray var,size;

Initializes ‘var’ as an array of the specified size. ‘size’ must be between 0 and 10000. ‘var’ can be any variable, it doesn’t matter if you have already used it without a [] behind it. You can even use a variable as normal variable and as an array at the same time (e.g. arr[i]=arr;)

After initializing the array you can access the array values through ‘var[index]’.

6.1.4. setstring varname,value;

Creates a string variable ‘varname’ with the given value. It just sets the flag ‘varname=value’. To access the value of a string variable, you can use the strequals operator: strequals(#s(varname), hello) is true when the string variable with the name ‘varname’ has the value ‘hello’. You can’t use these string variables for making post offices, but you can use it to save special player properties (the level where an item was collected, the colors of his coat before he was thrown into prison etc.). The variables will be saved on the server side, because they will be saved as ‘action flags’. You can delete the string variable with ‘setstring varname,;’ (empty value).

You can use also some other commands on string variables (strcontains(#s(varname),searchstr), strtofloat(#s(varname))).

6.2. Simple NPC manipulation

6.2.1. setgifpart filename,x,y,width,height;

Changes the gif file assigned to this npc. You can take every gif, even animated gifs will be accepted. When you use this command, the npc will be automatically shown/made visible. Only the rectangle described with (x,y,width,height) will be displayed. A simple example for this command is:

if (created) setgifpart head1.gif,0,64,32,32;

This shows a ‘Nick’ head looking down. Put the ‘setgifpart’ command inside an ‘if (playerenters) {...}’ or ‘if (created) {...}’ statement to make it visible in the editor too.

�

6.2.2. dontblock;

If you do this command, then the player can walk through the npc until you do the command 'blockagain'.

�

6.2.3. drawoverplayer;

Should be used together with 'dontblock'.

Normally objects will be drawn in the right Y-order. If you do the command 'drawoverplayer', then the npc will be drawn last, so it appears over the player if he walks under the npc.

�

6.2.4. drawunderplayer;

Should be used together with 'dontblock'.

Normally objects will be drawn in the right Y-order. If you do the command 'drawunderplayer', then the npc will be drawn first, so it appears under the player if he walks over the npc.

6.2.5. blockagain;

The previous three actions will be disabled when using this command.

6.2.6. canbecarried;

�

If you do this command, then the player can lift the npc and take it away until he throw it back onto the board. When the npc lands, the script will be called with the flag 'wasthrown' set.

6.2.7. cannotbecarried;

Disables carrying.

6.2.8. canbepushed;

If you do this command, the player can push the npc until there is something in the way.

6.2.9. cannotbepushed;

Disables pushing.

6.2.10. canbepulled;

If you do this command, the player can pull the npc until there is something in the way.

6.2.11. cannotbepulled;

Disables pulling.

6.3. Complex NPC operations

6.3.1. timershow;

When doing this comand the timercount will be displayed over the npc. See chapter 4.2. to learn how to use timeouts. If the timer runs out, then the timer will not be shown anymore.

6.3.2. showcharacter;

Displays a player character instead of the npc image. So the npc can look like a player and do animations easily. You can change the properties of the character with the variables ‘dir’, ’sprite’, ’swordpower’, ’shootpower’, ‘shieldpower’ and the command ‘setcharprop’. Some other npc properties like ‘x’, ’y’ and ‘drawoverplayer’ also affect the appearance of the character.

6.3.3. setcharprop messagecode,string;

Works like ‘setplayerprop’, but changes the properties of the character. You can also change ‘#n’ (nickname) with this command.

6.3.4. putnpc gifname,scriptname,x,y;

Creates an npc and puts it onto the board. ‘scriptname’ is the name of a text file containing the action script for this new npc. You can use this command as often as you want, but if you are making levels for the online mode then you shouldn’t do it too often because it could slow down the game.

You should always add a line with the ‘destroy’ command, otherwise the memory could overflow...

6.3.5. destroy;

Deletes the npc. You don’t need this for the 1/2/3/4-player mode because npcs will be deleted when you leave a level, but it can be useful for the online mode.

6.3.6. followplayer;

�

Lets the npc follow the player. The script will still work when the npc follows the player. The npc will be set free when you use the command 'hide', when the player lifts the npc or when you assign values to the x/y coordinates. ‘followplayer’ doesn’t work yet in the multiplayer mode (v1.2). ‘followplayer’ works best in combination with ‘showcharacter’.

6.3.7. toinventory flag;

Transfers the npc to the players inventory. The script will be stopped. 'flag' specifies the flag that controls the visibility of the inventory item. If you do 'unset flag' then the npc will be removed from the inventory.

6.3.8. toweapons weaponname;

�

Adds the npc to the player’s weapon list. The player can select this weapon by opening the weapon list (‘Q’ or joystick button 9), using the arrow keys to move to the weapon with the name’weaponname’, closing the list by pressing another key. If he has selected it, he can use it by pressing ‘D’ (or joystick button 1). If he does so, the npc script will be called with the flag ‘weaponfired’ set.

The npc will not be hidden when you do ‘toweapons’. You can use ‘hide’ or ‘destroy’ to make the npc invisible when the player got it.

If there is already a weapon with the name ‘waponname’, then this npc will replace the previous weapon.

When an npc is in the weapon list, it gets all events like a normal npc, so the script is called when a ‘playerlaysitem’, ‘playerenters’ etc. happens. You can use timeouts too. So weapons can do background actions. The next two commands only work for npc weapons:

6.3.9. showimg index,gifname,x,y;

Only works for npc weapons:

Displays an image at the specified position. ‘index’ is for identifying already existing images. If there is already an image with the same index, then it will replaced by the new image (if it has the same filename, then only the position will be updated).

The images displayed with this command will always be drawn last (over other objects).

6.3.10. hideimg index;

Only works for npc weapons:

Hides the image that has the specified index.

6.3.11. shootarrow direction;

Shoots an arrow to the specified direction. 'direction' can be 'up','left','down','right'.

6.3.12. shootfireball direction;

Shoots a fireball (power 2) to the specified direction.

6.3.13. shootfireblast direction;

Shoots a fireblast (power 1, causes explosions) to the specified direction.

6.3.14. shootnuke direction;

Shoots a 'nukebomb' (power 2, causes explosions) to the specified direction.

�

6.3.15. shootball;

Shoots a ball in the direction of the player. Balls can kill the player easily if you shoot fast enough...

6.3.16. hitplayer index,halfhearts,fromx,fromy;

Hurts a player. ‘index’ must be between 0 and playerscount-1, it says which player should be hurted. ‘fromx,fromy’ specifies from which position the player should be pushed away. The player’s power will be decreased by halfhearts/2. This command works for npc characters too: the variables hurtdx/hurtdy will be set, and the hearts variable will be decreased by halfhearts/2. The pre-generated npc baddies use these variables to detect if the npc has been hurted, so look for their scripts to see how it works.

6.4. Player manipulation

6.4.1. setlevel filename;	

With 'setlevel' the player will be warped to another level. Before you use this command, you should set playerx and playery to the correct values so that the player doesn't appear inside a tree or a inside a wall.

This command will end the script execution, the npc will be deleted, because the current level will be leaved (except when an npc weapon does this command).

6.4.2. seturllevel URL;	

With 'setlevel' the player will be warped to another level. Before you use this command, you should set playerx and playery to the correct values so that the player doesn't appear inside a tree or a inside a wall.

‘URL’ must be a legal URL, but without the leading ‘http://’. Use this command only for ‘offline’ levels, it’s not supported in online mode because the server must control what is in the levels.

6.4.3. sethead gifname;

Sets the gif image for the head of the current player. You can also do that with assigning a value to ‘playerheadset’, but with ‘sethead’ you can use filenames different to ‘headxxx.gif’.

6.4.4. setsword gifname,power;

Changes the sword of the player. The image file described with 'gifname' must have the same size as the existing swords that you can find in the \level\swords\ folder. It's very hard to paint new swords because the sword has many animation steps and the size cannot be changed. May be I will change the sword system in future versions so that it's easier to create bigger swords.

'power' specifies the power of the players sword. You can use 0 or negative amounts if you want to make healing weapons. Don't use 'sword1.gif',...,'sword4.gif' as 'gifname', this will set the power to the default value (to prevent irritations in the case that someone has a normal looking sword but having a different power).

6.4.5. setshield gifname,power;

�

Changes the shield of the player. The image file described with 'gifname' should have the default file size of 38x20 pixels, it shouldn’t be bigger than 76x40 except when you want to do special ‘shields’. You can even use animated gifs to make the shield better looking.

'power' describes the kind of sword that you want to create: 1 - normal sword, 2 - mirror shield (reflects arrows), 3 - lizard shield (reflects arrows and makes the player faster).

6.4.6. setbow gifname;

Sets the bow that should be displayed when playersprite==33.

6.4.7. setplayerdir direction;

You can change the player direction by assigning a value between 0 and 3 to 'playerdir'. But you can also change the players direction by using the 'setplayerdir' command. For 'direction' you can only use 'up', 'left', 'down' and 'right'.

6.4.8. setskincolor colorname;

�

Changes the players skin (the hands). Following colors are possible:

 - white

 - yellow

 - orange

 - pink

 - red

 - darkred

 - lightgreen

 - green

 - darkgreen

 - lightblue

 - blue

 - darkblue

 - brown

 - cynober

 - purple

 - darkpurple

 - lightgray

 - gray

 - black

�

6.4.9. setcoatcolor colorname;

Changes the players coat color. See chapter 5.5 for a complete list of possible colors.

�

6.4.10. setsleevecolor colorname;

Changes the players sleeve color. See chapter 5.5 for a complete list of possible colors.

�

6.4.11. setshoecolor colorname;

Changes the players shoe color. See chapter 5.5 for a complete list of possible colors.

�

6.4.12. setbeltcolor colorname;

Changes the players belt color. See chapter 5.5 for a complete list of possible colors.

6.4.13. setplayerprop messagecode,string;

Changes the properties of the player. ‘messagecode’ can be ‘#c’, ‘#1’, ‘#2’, ‘#3, ‘#5’,’#7’,‘#C0’, ‘#C1’, ‘#C2’, ‘#C3’, ‘#C4’. See chapter 8 for the meaning of the message codes.

6.4.14. takeplayercarry;

If the player carries something, then this command takes it away. You can test if the player carries something by cheking the flags 'carrying', 'carriesbush', 'carriessign', 'carriesvase', 'carriesstone', 'carriesblackstone', 'carriesnpc'.

6.4.15. disableweapons;

Disables all player weapons (sword, bow, bombs). If you do this, then the player can only defeat himself by throwing bushes or reflecting arrows using the miror shield.

6.4.16. enableweapons;

Enables the player weapons if he has weapons.

6.4.17. freezeplayer seconds;

If you this command, then the player can’t move for the specified time. But he can still be attacked by other players or by baddies, so he can get unfreezed before the timer runs down to zero.

6.4.18. hideplayer seconds;

Hides the player for the specified time. You can still see the sword, weapons, carried objects, your horse, chat text, and you are visible for a short time when hurted.

6.4.19. hidesword seconds;

Hides the player’s sword for the specified time. This can be usefull if you change the player’s sprite to 9-13 and don’t want the sword to be shown. Doesn’t work yet in the multiplayer mode.

6.5. Level/Game manipulation

6.5.1. updateboard x,y,width,height;

After modifying the board by assigning values to board[index], you can make the modifies visible with this command. Then the modifies will also be sent to other players (in the multiplayer mode). In the multiplayer mode, this changes will be undone by the server after the ‘respawn time’ set in the server when width==2 and height==2.

6.5.2. putobject objectname,x,y;

Puts an object onto the board. ‘objectname’ must exist in the ‘predefined objects’ list of the editor.

If an npc weapon uses this command, then it gives the player some power that could be abused. So only special people should get that power, otherwise it could destroy the look of the online levels.

6.5.3. putbomb power,x,y;

Places a (normal) bomb with the specified power (0-normal bomb, 1-super bomb, 2-jolt bomb) at the defined position.

6.5.4. putexplosion radius,x,y;

Creates an explosion with the specified radius at the defined position.

6.5.5. putleaps leaptype,x,y;

�

Produces an object 'explosion' at the specified position. 'leaptype' defines the kind of exploded object:

0 - bush, 1 - swamp, 2 - stone, 3 - sign, 4 - ball, 5 - water

6.5.6. puthorse gifname,x,y;

�

Places a horse on the board at the specified position. 'gifname' is the name of an image file that should have the same size as the existing horses in the folder \levels\horses. Horses have 3 animation steps and have four different directions, so you have to paint 12 sprites. The sprites for up/down have the size 64x48 pixel, the sprites for left/right have the size 96x48 pixel.

You can create boats using the 'puthorse' command, just put a 'horse' onto water. The game then handles it like a boat, it makes waves when moving and has already full speed. Of course you need a different image if you want to make a boat.

6.5.7. setbackpal filename;

Replaces the color palette of the background image with the color palette of the specified gif file. Follow those steps to make your own background palette gif:

- Copy pics1.gif to save the original file

- Change the color palette of pics1.gif (don’t change the color order!)

- Save & test it

- Crop only one pixel of the image and save it under ‘mypalette.gif’ (then the file should have a size of 807 bytes)

- Copy the original image back to pics1.gif

- Add the command ‘setbackpal mypalette.gif;’ to the script of one of your npcs .

Please put your palette gifs into the folder /levels/backpals. I will try to not change the color palette of pics1.gif anymore, but when I do then I will also try to convert all gifs that are in /levels/backpals.

6.5.8. setletters filename;

Sets the gif file that will be used to display signs. The default file is ‘letters.gif’. Because the filename will not be saved when the player quits the game, you should use the ‘setletters’ command in each level where you want to have display it, not only in the entry level.

The colors of the pixels (254,223) and (255,223) are used for the sign background.

6.5.9. setmap gifname,levelnamesfile,x,y;

Sets the map. ‘levelnamesfile’ points to a file that contains the level names that belong to the map squares. Each level takes 56x56 pixel. x/y is the position where the head icon of the player should appear when entering the map.

6.5.10. setminimap gifname,levelnamesfile,x,y;

Sets the minimap. ‘levelnamesfile’ points to a file that contains the level names that belong to the map squares. Each level takes 14x14 pixel. x/y is the position where the head icon of the player should appear when entering the map.

6.5.11. noplayerkilling;

When this command is executed, players cannot kill each other anymore. But this only works in the current level.

6.6. Baddy manipulation

6.6.1. putcomp baddyname,x,y;

Puts a baddy on the board at the specified position. Following names for baddies are possible:

 - graysoldier

 - bluesoldier

 - redsoldier

 - shootingsoldier

 - swampsoldier

 - frog

 - octopus (use this name if you want to place a spider)

 - goldenwarrior

 - lizardon

 - dragon

6.6.2. putnewcomp baddyname,x,y,gifname,power;

Works in the same way as 'putcomp', but you can additionally define an image filename and the power (the count how often you must hit the baddy). The gif image must have the same size as the baddy described with 'baddyname'. You can find the images for the existing baddies in the folder \levels\baddies. Here you see which image you need for the baddy type that you use:

�

graysoldier, swampsoldier: baddygray.gif

bluesoldier, shootingsoldier: baddyblue.gif

redsoldier: baddyred.gif

frog: baddyhare.gif

octopus/spider: baddyoctopus

goldenwarrior: baddygold.gif

lizardon: baddylizardon.gif

dragon: baddydragon.gif

With 'punewcomp' you cannot create really new baddies, you can only take existing baddies and give them a new look.

6.6.3. hitcompu index,decrpower,fromx,fromy;

Hurts a baddy. ‘index’ must be between 0 and compuscount-1, it says which baddy should be hurted. ‘fromx,fromy’ specifies from which position the baddy should be pushed away. The baddy’s power will be decreased by ‘decrpower’.

6.6.4. removecompus;

Removes all baddies from the board. This will cause a 'compusdied' event which interrupts the current script execution.

You can check if there are baddies with the 'compsdead' flag,

6.7. File operations

6.7.1. openurl URL;

Opens an URL with the default browser. Before the browser will be opened a dialog pops up where the user can cancel the action. 'URL' is a normal URL but without the leading 'http://'.

6.7.2. showfile filename;

Opens the file with the program associated with the file extension of ‘filename’. It works like a double-click on the filename in the windows explorer, so when you do ‘showfile sprites.gif’ then ‘sprites.gif’ will be opened with the default GIF editor (e.g. Paint Shop Pro).

�
7. Events

Here you will see a list of all events. 'Event' means the npc script will be called and a special flag is set.

playerenters	the player enters the level right now

playerouchsme	the player touchs the npc

playertouchsother	another npc is touched by the player

playerlaysitem 	an item is layed by the player or another npc

playerchats	the player says something

weaponfired	this npc is used as weapon (‘D’ or joybutton1 is pressed)

compusdied	the last baddy has died

playerendsreading	the player ends reading a sign

exploded	a bomb explosion hits the npc

timeout 	the npc's timeout runs out

washit	the npc was slayed with a sword or axe

wasshot	the npc was shot with arrows

(shotbyplayer	the npc was shot by the player)

(shotbybaddy	the npc was shot by a baddy)

waspelt	the npc was pelt

(peltwithbush	the npc was pelt with a bush)

(peltwithsign	the npc was pelt with a sign)

(peltwithvase	the npc was pelt with a vase)

(peltwithstone	the npc was pelt with a stone)

(peltwithblackstone	the npc was pelt with a blackstone)

(peltwithnpc	the npc was pelt with another npc)

8. Addtional flags

A list of flags not mentioned yet:

playerkiller	the player is a player killer

weaponsenabled	the player weapons are enabled

visible	the npc is visible

followsplayer	the npc currently follows the player

onwall(x, y)	is true when the specified field is blocked

compsdead	there is no living baddy

playeronhorse	the player rides on a horse (or boat)

playerswimming	the player is swimming

playercanspin	the player has spin power (for sword)

strequals(str1, str2)	str1 = str2 (both strings can contain message codes)

strcontains(str1, str2)	str1 contains str2

 (to check what the player says use: strequals(#c,str), strcontains(#c,str); to check if the player is in a special guild: strequals(#g,guildname) or strcontains(#n,(guildname)))

9. Message codes

When doing ‘message’, ‘strequals’ or ‘strcontains’ you can use special message codes to put dynamic data into the strings (it works with almost every command). These codes start with ‘#’ and will be replaced when ‘message’/’strequals’ are used in the game. So with ‘message’ you can only do a snapshot of the current value of the variables, the message will not be changed when it will be send to other players. By appending an ‘(index)’ to the message code you can access the properties of other players too: if index=-1 then you access the properties of the npc character, with index=1..playerscount-1 you can access the properties of other client players. These are the existing message codes (may be it will added to the signs too in future versions):

#a	the account name of the player

#n, #n(index)	the nick name of the player

#g, #g(index)	the guild name of the player

#c, #c(index)	the current chat text of the player

#v(var)	the value of ‘var’ as string (can’t use this.vars)

#s(var)	the value of the string variable ‘var’

#L	the current level filename

#f	the gif filename of the npc

#w	the name of the current npc weapon of the player

#1, #1(index)	the sword gif filename of the player

#2, #2(index)	the shield gif filename of the player

#3, #3(index)	the head gif filename of the player

#5, #5(index)	the filename of the player’s horse

#6, #6(index)	the gif filename of the npc that is carried by the player

#7, #7(index)	the bow gif filename of the player

#C0, #C0(index)	the skin color

#C1, #C1(index)	the coat color

#C2, #C2(index)	the sleeves color

#C3, #C3(index)	the shoes color

#C4, #C4(index)	the belt color

�

(c) 1999 by Stefan Knorr

greenrupee

redrupee

bluerupee

bombs

darts

heart

fireball

bow

fireblast

nukeshot

superbomb

bomb

glove2

glove1

fullheart

joltbomb

shield

mirrorshield

sword

lizardshield

goldensword

lizardsword

battleaxe

